已知关于 的二元一次方程 ,当 每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何 值它都能使这个方程成立吗?
如图,已知反比例函数(
)与一次函数
(
)相交于A、B两点,AC⊥
轴于点C,若△OAC的面积为1,且tan∠AOC=2.
(1)求反比例函数与一次函数的表达式;
(2)请直接写出B点的坐标,并指出当为何值时,反比例函数
的值小于一次函数
的值.
如图,、
是反比例函数
(k>0)在第一象限图象上的两点,点
的坐标为(2,0),若△
与△
均为等边三角形.
(1)求此反比例函数的解析式;
(2)求A2点的坐标.
如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,且与反比例函数
的图象在第一象限交于C点,CD垂直与x轴,垂足为D.若OA=OB=OD=1,
(1)求点A,B,D的坐标;
(2)求一次函数和反比例函数的解析式。
正比例函数y=k1x的图象与反比例函数(x>0)的图象交于点M(a,1),MN⊥x轴于点N(如图),若△OMN的面积等于2,求这两个函数的解析式.
如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.