某同学设计了一种粒子加速器的理想模型。如图所示, 平面内,x轴下方充满垂直于纸面向外的匀强磁场,x轴上方被某边界分割成两部分,一部分充满匀强电场(电场强度与 轴负方向成 角),另一部分无电场,该边界与y轴交于M点,与x轴交于N点。只有经电场到达N点、与 轴正方向成 角斜向下运动的带电粒子才能进入磁场。从M点向电场内发射一个比荷为 的带电粒子A,其速度大小为 、方向与电场方向垂直,仅在电场中运动时间T后进入磁场,且通过N点的速度大小为 。忽略边界效应,不计粒子重力。
(1)求角度 及M、N两点的电势差。
(2)在该边界上任意位置沿与电场垂直方向直接射入电场内的、比荷为 的带电粒子,只要速度大小适当,就能通过N点进入磁场,求N点横坐标及此边界方程。
(3)若粒子A第一次在磁场中运动时磁感应强度大小为 ,以后每次在磁场中运动时磁感应强度大小为上一次的一半,则粒子A从M点发射后,每次加速均能通过N点进入磁场。求磁感应强度大小 及粒子A从发射到第n次通过N点的时间。
如图所示,在水平地面上固定一倾角=37°,表面光滑的斜面体,物体A以v1=6m/s的初速度沿斜面上滑,同时在物体A的正上方,有一物体B以某一初速度水平抛出。如果当A上滑到最高点时恰好被B物体击中。A、B均可看作质点,sin37º=0.6,cos37º=0.8,g取10m/s2。求:
(1)物体A上滑到最高点所用的时间t
(2)物体B抛出时的初速度v2
(3)物体A、B间初始位置的高度差h
如图所示,一辆载重卡车沿平直公路行驶,车上载有质量均为m的A、B两块长方体水泥预制件。己知预制件左端与车厢前挡板的距离为L,A、B间以及B与车厢间的动摩擦因数分别为,各接触面间的最大静摩擦力等于滑动摩擦力。卡车以速度v0匀速行驶时,因前方出现障碍物而制动并做匀减速直线运动。问:
(1)卡车制动的加速度满足什么关系时,预制件A相对B滑动,而B相对车厢底板静止?
(2)卡车制动后为保证司机安全,在B相对车厢底板静止的情况下,预制件A不与车厢前挡板碰撞,则卡车从开始制动到停止所经历的时间应满足什么条件?
如图所示,半径R=0.8m的光滑1/4圆弧轨道固定在光滑水平上,轨道上方的A点有一个可视为质点的质量m=1kg的小物块。小物块由静止开始下落后打在圆弧轨道上的B点但未反弹,在该瞬间碰撞过程中,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变,此后小物块将沿着圆弧轨道滑下。已知A点与轨道的圆心O的连线长也为R,且AO连线与水平方向的夹角为30°,C点为圆弧轨道的末端,紧靠C点有一质量M=3kg的长木板,木板的上表面与圆弧轨道末端的切线相平,小物块与木板间的动摩擦因数,g取10m/s2。求:
(1)小物块刚到达B点时的速度;
(2)小物块沿圆弧轨道到达C点时对轨道压力FC的大小;
(3)木板长度L至少为多大时小物块才不会滑出长木板?
如图所示,倾角θ=300、长L=4.5m的斜面,底端与一个光滑的1/4圆弧轨道平滑连接,圆弧轨道底端切线水平.一质量为m=1kg的物块(可视为质点)从斜面最高点A由静止开始沿斜面下滑,经过斜面底端B后恰好能到达圆弧轨道最高点C,又从圆弧轨道滑回,能上升到斜面上的D点,再由D点由斜面下滑沿圆弧轨道上升,再滑回,这样往复运动,最后停在B点.已知物块与斜面间的动摩擦因数为,g=10m/s2,假设物块经过斜面与圆弧轨道平滑连接处速率不变.求:
⑴.物块经多长时间第一次到B点;
⑵.物块第一次经过B点时对圆弧轨道的压力;
⑶.物块在斜面上滑行的总路程.
如图所示,一质量为m的物块在与水平方向成θ的力F的作用下从A点由静止开始沿水平直轨道运动,到B点后撤去力F, 物体飞出后越过“壕沟”落在平台EG段.已知物块的质量m =1kg,物块与水平直轨道间的动摩擦因数为μ=0.5,AB段长L=10m,BE的高度差h =0.8m,BE的水平距离 x =1.6m.若物块可看做质点,空气阻力不计,g取10m/s2.
(1)要越过壕沟,求物块在B点最小速度v的大小;
(2)若θ=370,为使物块恰好越过“壕沟”,求拉力F的大小;
(3)若θ大小不确定,为使物块恰好越过“壕沟”,求力F的最小值(结果可保留根号).