某同学设计了一种粒子加速器的理想模型。如图所示, 平面内,x轴下方充满垂直于纸面向外的匀强磁场,x轴上方被某边界分割成两部分,一部分充满匀强电场(电场强度与 轴负方向成 角),另一部分无电场,该边界与y轴交于M点,与x轴交于N点。只有经电场到达N点、与 轴正方向成 角斜向下运动的带电粒子才能进入磁场。从M点向电场内发射一个比荷为 的带电粒子A,其速度大小为 、方向与电场方向垂直,仅在电场中运动时间T后进入磁场,且通过N点的速度大小为 。忽略边界效应,不计粒子重力。
(1)求角度 及M、N两点的电势差。
(2)在该边界上任意位置沿与电场垂直方向直接射入电场内的、比荷为 的带电粒子,只要速度大小适当,就能通过N点进入磁场,求N点横坐标及此边界方程。
(3)若粒子A第一次在磁场中运动时磁感应强度大小为 ,以后每次在磁场中运动时磁感应强度大小为上一次的一半,则粒子A从M点发射后,每次加速均能通过N点进入磁场。求磁感应强度大小 及粒子A从发射到第n次通过N点的时间。
直角等腰玻璃三棱镜ABC的截面如图所示, ABC= ACB=45°,一条单色光从腰AB上的D点射入三棱镜,在玻璃内部折射光线为DE,折射角r="30" ,折射光线传播到BC边上的E点。已知该玻璃砖的折射率n=。
(i)求光线的入射角i(图中未标出)
(ii)判断光线能否在E点发生全反射。
)(如图所示,水平放置一个长方体气缸,总体积为V,用无摩擦活塞(活塞绝热、体积不计)将内部封闭的理想气体分为完全相同的A、B两部分。初始时两部分气体压强均为P,温度均为T。若使A气体的温度升高,B气体的温度保持不变,求
(i)A气体的体积变为多少?
(ii)B气体在该过程中是放热还是吸热?
(18分)如图所示,在平面直角坐标系中的三角形FGH区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B,三点坐标分别为F( -3L,5L)、G( -3L, -3L)、H(5L,-3L)。坐标原点O处有一体积可忽略的粒子发射装置,能够连续不断的在该平面内向各个方向均匀的发射速度大小相等的带正电的同种粒子,单位时间内发射粒子数目稳定。粒子的质量为m,电荷量为q,不计粒子间的相互作用以及粒子的重力。
(1)速率在什么范围内所有粒子均不可能射出该三角形区域?
(2)如果粒子的发射速率为,设在时间t内粒子源发射粒子的总个数为N,在FH边上安装一个可以吸收粒子的挡板,那么该时间段内能够打在挡板FH上的粒子有多少?并求出挡板上被粒子打中的长度。
(14分)如图所示为一水平传送带装置示意图。A、B为传送带的左、右端点,AB长L=2m,初始时传送带处于静止状态,当质量m=2kg的物体(可视为质点)轻放在传送带A点时,传送带立即启动,启动过程可视为加速度a=2的匀加速运动,加速结束后传送带立即匀速转动。已知物体与传送带间动摩擦因数
=0.1,设最大静摩擦力等于滑动摩擦力,g取l0
。
(1)如果物块以最短时间到达B点,物块到达B点时的速度大小是多少?
(2)上述情况下传送带至少加速运动多长时间?
如图所示,在真空中,半径为R的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场。有一电荷量为q、质量为m的带正电粒子,以速率V0从圆周上的P点沿垂直于半径OOl并指向圆心O的方向进入磁场,从圆周上的O1点飞出磁场后沿两板的中心线O1O2射入平行金属板M和N, O1O2与磁场区域的圆心O在同一直线上。板间存在匀强电场,两板间的电压为U,两板间距为d。不计粒子所受重力。求:
(1)磁场的磁感应强度B的大小;
(2)粒子在磁场中运动的时间;
(3)粒子在两平行板间运动过程中的最大速度与板长L的关系。