如图, 为线段 外一点.
(1)求作四边形 ,使得 ,且 ;(要求:尺规作图,不写作法,保留作图痕迹)
(2)在(1)的四边形 中, , 相交于点 , , 的中点分别为 , ,求证: , , 三点在同一条直线上.
(本题4+4分)已知关于的一元二次方程
有两个不相等的实数根。
(1)求的取值范围;(2)若
为正整数,且该方程的根都是整数,求
的值。
(本题6+6分)
(1)计算:;
(2)先化简,再求值:,其中x是方程
的根.
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.
(1)求证:△AOG≌△ADG;
(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;
(3)当∠1=∠2时,求直线PE的解析式;
(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形,若存在,请直接写出M点坐标;若不存在,请说明理由.
如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.
(1)求证:GD是⊙O的切线;
(2)试判断△DEF的形状,并说明理由;
(3)若OF:OB=1:3,⊙O的半径为3,求AG的长.
如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.
(1)用含x的式子表示横向甬道的面积为平方米;
(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;
(3)根据设计的要求,甬道的宽不超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?