两县城 和 相聚20km,现计划在两县城外以 为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城 和城 的总影响度为城 与城 的影响度之和,记 点到城 的距离为 ,建在 处的垃圾处理厂对城A和城B的总影响度为 ,统计调查表明:垃圾处理厂对城 的影响度与所选地点到城 的距离的平方成反比,比例系数为4;对城 的影响度与所选地点到城B的距离的平方成反比,比例系数为 ,当垃圾处理厂建在 的中点时,对称 和城 的总影响度为0.0065.
(Ⅰ)将 表示成 的函数;
(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离,若不存在,说明理由。
(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:
C(x)=若不建隔热层,每年能源消耗费用为8万元。设
为隔热层建造费用与20年的能源消耗费用之和。
(1)求的值及
的表达式。
(2)隔热层修建多厚时,总费用达到最小,并求最小值。
(满分14分)如图,扇形中,
,
,在弧
上有一动点
,过
作PC∥OB交
于
,设
,
(1)求及OC的长(可用
表示);
(2)求面积的最大值及此时
的值。
(满分14分)已知双曲线的离心率为
,右准线方程为
。
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆
上,求m的值.
(满分12分)已知向量与
互相垂直,其中
.
(1)求和
的值;
(2)求函数的值域。
满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。
(Ⅰ)求角C的大小;
(Ⅱ)求的最大值。