已知 a 1 = 1 , a 2 = 4 , a n + 2 = 4 a n + 1 + a n , b n = a n + 1 a n , n ∈ N + . (Ⅰ)求 b 1 , b 2 , b 3 的值; (Ⅱ)设 c n = b n b n + 1 , S n 为数列 c n 的前 n 项和,求证: S n ≥ 17 n ; (Ⅲ)求证: b 2 n - b n < 1 64 · 1 17 n - 2 .
在中,角所对的边分别是,且. (Ⅰ)求的值; (Ⅱ)若,,求边.
等比数列的前项和为,已知,,成等差数列. (Ⅰ)求的公比; (Ⅱ)若,求.
(),其中,将的最小值记为, (1)求的表达式; (2)当时,要使关于的方程有且仅有一个实根,求实数的取值范围.
已知向量,.向量,,且. (1)求向量; (2)若,,求的值.
已知函数=2, (1)求函数在区间上的最大值和最小值; (2)若,,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号