本小题满分12分)设函数
(1)求函数取最值时x的取值集合;
(2)在△ABC中,角A、B、C的对边分别是a,b,c,且满求函数
的取值范围.
(本小题满分14分)已知半径为的圆的圆心在
轴上,圆心的横坐标是整数,且与直线
相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线与圆相交于
两点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,是否存在实数,使得弦
的垂直平分线
过点
,若存在,求出实数
的值;若不存在,请说明理由.
(本小题满分12分)如图,在底面是直角梯形的四棱锥S-ABCD中,
(1)求四棱锥S-ABCD的体积;
(2)求证:BC;
(3)求SC与底面ABCD所成角的正切值。
(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2)设BD=1,求三棱锥D—ABC的表面积。
(本小题满分12分)已知圆C:,直线
:mx-y+1-m=0
(1)判断直线与圆C的位置关系。
(2)若直线与圆C交于不同两点A、B,且
=3
,求直线
的方程。