(本题13分)已知,点在函数的图象上,其中(1)证明数列是等比数列;(2)设,求;(3)记,求数列的前n项和为Sn,并证明Sn<1
已知函数 (1)讨论的单调区间; (2)若对任意的,总存在成立,求a的取值范围.
(2)若过点作曲线E的互相垂直的弦PQ和MN,求四边形PMQN面积的最大值和此时弦所在的直线方程.
已知,B、D是圆上两动点,且四边形ABCD是矩形(1)求顶点C的轨迹E的方程;
( 12分)已知正项数列的前n项和满足 (1)求数列的通项公式; (2)设是数列的前n项的和,求证:
将一个各面上均涂有红色的正方体锯成27个同样大小的小正方体, (1)从这些小正方体中任取一个,求其中至少有两个面涂有红色的概率; (2)从中任取2个小正方体,记2个小正方体涂有红色的面数和为ξ,求ξ的分布列和数学期望.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号