已知向量
(1)当时,求
的值;(2)求
在
上的值域.
已知数列的前n项和为
,且对一切正整数n都有
。
(1)证明:;(2)求数列
的通项公式;
(3)设,
求证:对一切
都成立。
已知动圆过定点,且与直线
相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线,使
过点(0,1),并与轨迹
交于
两点,且满足
?若存在,求出直线
的方程;若不存在,说明理由.
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是
,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;(2)签约人数的分布列和数学期望.
已知向量,
,函数
,
.
(1)求函数的最小正周期;
(2)在中,
分别是角
的对边,且
,
,
,且
,求
的值.
已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.
(1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;
(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围;
(3)若a>0,f(x)为偶函数,实数m,n满足mn<0,m+n>0,定义函数,试判断F(m)+F(n)值的正负,并说明理由.