(本小题满分14分)已知数列的首项
,
,
.
(Ⅰ)求的通项公式;(Ⅱ)证明:对任意的
,
,
;(Ⅲ)证明:
.
甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的概率都是
.设每人回答正确与否相互之间没有影响,用
表示甲队总得分.
(I)求随机变量的分布列及其数学期望E
;
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.
在中,角
所对的边分别是
,已知
.
(Ⅰ)若的面积等于
,求
;
(Ⅱ)若,求
的面积.
如图,已知椭圆(a>b>0)的离心率
,过点A(0,-b)和B(a,0)的直线与原点的距离为
.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
在正方体中,如图E、F分别是
,CD的中点,
(1)求证:;
(2)求.
已知:等差数列{}中,
=14,前10项和
.
(Ⅰ)求;
(Ⅱ)将{}中的第2项,第4项,…,第
项按原来的顺序排成一个新数列,求此数列的前
项和
.