(本小题满分12分)某地一水库年初有水量a(a≥10000),其中含污染物的量为p0(设水与污染物混合均匀),已知该地降水量与月份的关系为而每月流入水库的污水量与蒸发的水量都是r,且此污水中含污染物的量为p(p<r),设当年水库中的水不作它用.
(Ⅰ)求第x月水库中水的含污比g(x)的表达式(含污比=);
(Ⅱ)当p0=0时,求水质量差的月份及此月的含污比.
设无穷等比数列的公比为q,且
,
表示不超过实数
的最大整数(如
),记
,数列
的前
项和为
,数列
的前
项和为
.
(Ⅰ)若,求
;
(Ⅱ)证明: (
)的充分必要条件为
;
(Ⅲ)若对于任意不超过的正整数n,都有
,证明:
.
已知是抛物线
上的两个点,点
的坐标为
,直线
的斜率为
.设抛物线
的焦点在直线
的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过
两点分别作W的切线,记两切线的交点为
. 判断四边形
是否为梯形,并说明理由.
已知函数,其中
是自然对数的底数,
.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求函数
的最小值.
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:AC⊥平面BDEF;
(Ⅱ)求证:平面BDGH//平面AEF;
(Ⅲ)求多面体ABCDEF的体积.
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.