已知双曲线 ,设过点 的直线 的方向向量
(1)当直线
与双曲线
的一条渐近线
平行时,求直线
的方程及
与
的距离;
(2)证明:当
时,在双曲线
的右支上不存在点
,使之到直线
的距离为
.
(本题14分)已知,
,设
.
(1)求函数的图像的对称轴及其单调递增区间;
(2)当,求函数
的值域及取得最大值时
的值;
(3)若分别是锐角
的内角
的对边,且
,
,试求
的面积
.
(本题14分)已知函数
(1)讨论的单调区间;
(2)若在
处取得极值,直线y=m与
的图象有三个不同的交点,求m的取值范围。
(本题12分)函数。
(1)求的最小正周期;
(2)若,
,求
的值。
(本题12分)
已知函数的定义域为集合A,函数
的定义域为集合B
(1)当m=3时,求
(2)若,求实数m的值
(本小题满分10分)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.