已知双曲线 ,设过点 的直线 的方向向量
(1)当直线
与双曲线
的一条渐近线
平行时,求直线
的方程及
与
的距离;
(2)证明:当
时,在双曲线
的右支上不存在点
,使之到直线
的距离为
.
已知函数
(Ⅰ)求函数的极值;
(Ⅱ)对于曲线上的不同两点,
,如果存在曲线上的点
,且
,使得曲线在点
处的切线
∥
,则称
为弦
的伴随切线。特别地,当
时,又称
为
的λ-伴随切线。
(ⅰ)求证:曲线的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有伴随切线?若存在,给出一条这样的曲线 ,并证明你的结论; 若不存在 ,说明理由。
已知直线:
与圆C:
相交于
两点.
(Ⅰ)求弦的中点
的轨迹方程;
(Ⅱ)若为坐标原点,
表示
的面积,
,求
的最大值.
将如图1的直角梯形ABEF(图中数字表示对应线段的长度)沿直线CD折成直二面角,连结EB、FB、FA后围成一个空间几何体如图2所示,
(1)求异面直线BD与EF所成角的大小;
(2)求二面角D—BF—E的大小;
(3)求这个几何体的体积.
在等比数列中,
,
。
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列
的前n项和
。
在ΔABC中,内角A,B,C所对的边分别为a,b,c,已知.
(1) 求的值; (2) 若
是钝角,求sinB的取值范围