(本题14分)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)
与相应的生产能耗y(吨标准煤)的几组对照数据
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1) 请根据上表提供的数据,求出y关于x的线性回归方程;
(2) 已知该厂技术改造前100吨甲产品能耗为90吨标准煤. 请进行线性相关性分析,如果有95﹪以上把握说具有线性相关性,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考数据: 3×2.5+4×3+5×4+6×4.5=66.5)
n-2 |
0.05 |
0.01 |
2 |
0.950 |
0.990 |
(本小题14分)
已知椭圆的一个顶点为
,离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆交于A,B两点,坐标原点O到直线l的距离为,
求△AOB面积的最大值.
(本小题13分)
定义在上的函数
同时满足以下条件:
①在
上是减函数,在
上是增函数;②
是偶函数;
③在
处的切线与直线
垂直.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求函数
在
上的最小值.
(本小题13分)
一个多面体的直观图和三视图如图所示,其中,
分别是
,
的中点,
是
上的一动点.
(Ⅰ)求该几何体的体积与表面积;
(Ⅱ)求证:⊥
;
(Ⅲ)当时,在棱
上确定一点
,使得
//平面
,并给出证明.
(本小题13分)
已知等比数列满足
,且
是
,
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,
,求使
成立的正整数
的最小值.
(本小题13分)
已知向量,
,函数
.
(Ⅰ)求函数的最小正周期
;
(Ⅱ)已知,
,
分别为
内角
,
,
的对边,其中
为锐角,
,
,且
,求
,
和
的面积
.