(本题14分)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)
与相应的生产能耗y(吨标准煤)的几组对照数据
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1) 请根据上表提供的数据,求出y关于x的线性回归方程;
(2) 已知该厂技术改造前100吨甲产品能耗为90吨标准煤. 请进行线性相关性分析,如果有95﹪以上把握说具有线性相关性,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考数据: 3×2.5+4×3+5×4+6×4.5=66.5)
n-2 |
0.05 |
0.01 |
2 |
0.950 |
0.990 |
已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(本小题满分12分)
已知{an}是各项均为正数的等比例数列,且
(Ⅰ)求{an}的通项公式;
(Ⅱ)设,求数列{bn}的前N项和Tn。
(本小题共12分)
已知函数
(Ⅰ)求的值;
(Ⅱ)求的最大值和最小值
(本小题共10分)
已知为等差数列,且
,
。
(Ⅰ)求的通项公式;
(Ⅱ)若等比数列满足
,
,求
的前n项和公式
记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若BA,求实数a的取值范围.