已知数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(1)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (2)求数列{an}的通项公式;
(3)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(本小题满分12分)
在四棱锥中,
,
,
底面
,
,直线
与底面
成
角,点
分别是
的中点.
(1)求二面角的大小;
(2)当的值为多少时,
为直角三角形.
(本小题满分12分)
从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同。
(1)若抽取后又放回,抽3次,分别求恰2次为红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,求抽完红球所需次数不少于4次的概率。
(本小题满分10分)
在中,角
、
、
的对边分别为
、
、
,且
边上的中线
的长为
(I)求角的大小;
(II)求的面积.
已知函数
(1)若函数的取值范围;
(2)若对任意的
时恒成立,求实数b的取值范围。
已知焦点在x轴上,离心率为的椭圆的一个顶点是抛物线
的焦点,过椭圆右焦点F的直线l交椭圆于A、B两点,交y轴于点M,且
(1)求椭圆的方程;
(2)证明:为定值。