(本题14分)如图,
分别是正方体
的
棱的中点.
(1)求证://平面
;
(2)求证:平面平面
.
若正项数列的前
项和为
,首项
,
,(
)在曲线
上.
(1)求数列的通项公式
;
(2)设,
表示数列
的前
项和,求证:
.
(本小题满分12分)如图所示,在所有棱长都为的三棱柱
中,侧棱
,
点为棱
的中点.
(1)求证:∥平面
;
(2)求四棱锥的体积.
(满分10分)已知函数的最小正周期为
,且
.
(1)求的表达式;
(2)设,
,
,求
的值.
(本小题满分12分)设函数.
(Ⅰ)当(
为自然对数的底数)时,求
的极小值;
(Ⅱ)讨论函数零点的个数;
(Ⅲ)若对任意,
恒成立,求
取值范围.
一个暗箱里放着6个黑球、4个白球.
(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球概率;
(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球概率;
(3)有放回地依次取出3个球,求取到白球个数的分布列和期望.