(本题16分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加 d(d>0), 因此,历年所交纳的储备金数目a1, a2, … 是一个公差为 d 的等差数列. 与此同时,国家给予优惠的计息政府,不仅采用固定利率,而且计算复利. 这就是说,如果固定年利率为r(r>0),那么, 在第n年末,第一年所交纳的储备金就变为 a1(1+r)n-1,第二年所交纳的储备金就变成 a2(1+r)n-2,……. 以Tn表示到第n年末所累计的储备金总额.(Ⅰ)写出Tn与Tn-1(n≥2)的递推关系式;(Ⅱ)求证Tn=An+ Bn,其中{An}是一个等比数列,{Bn}是一个等差数列.
如图,直线过圆心
,交⊙
于
,直线
交⊙
于
(不与
重合),直线
与⊙
相切于
,交
于
,且与
垂直,垂足为
,连结
.
求证:(1);
(2).
设函数
(I)讨论的单调性;
(II)若有两个极值点
和
,记过点
的直线的斜率为
,问:是否存在
,使得
若存在,求出
的值,若不存在,请说明理由.
如图,直角梯形与等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.
(1)求证:;
(2)求直线与平面
所成角的正弦值;
是双曲线
上一点,
、
分别是双曲线
的左、右顶点,直线
,
的斜率之积为
.
(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于
,
两点,
为坐标原点,
为双曲线上一点,满足
,求
的值.
设各项均为正数的等比数列中,
,
.设
.
(1)求数列的通项公式;
(2)若,
,求证:
;