某公司“咨询热线”电话共有10路外线,经长期统计发现,在8点至10点这段时间内,英才苑外线电话同时打入情况如下表所示:
电话同时打入数ξ |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
概率P |
0.13 |
0.35 |
0.27 |
0.14 |
0.08 |
0.02 |
0.01 |
0 |
0 |
0 |
0 |
(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话).
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这一时间内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话一次不能接通的概率表示公司形象的“损害度”,求这种情况下公司形象的“损害度”;(2)求一周五个工作日的这一时间内,同时打入的电话数ξ的期望值.
电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.右面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷 |
体育迷 |
合计 |
|
男 |
|||
女 |
10 |
55 |
|
合计 |
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:,
![]() |
0.05 |
0.01 |
![]() |
3.841 |
6.635 |
(本小题满分12分)设函数
(1)求的最大值,并写出使
取最大值时
的集合;
(2)已知中,角
对边分别为
若
,求
的最小值.
(本小题满分12分)已知向量,
,且
(1)求的取值范围;
(2)求函数的最小值,并求此时
的值.
(本小题满分14分)已知函数
(1)求曲线在点
处的切线方程;
(2)求函数的极值;
(3)对恒成立,求实数
的取值范围.
(本小题满分14分)已知函数,其中
(1)写出的奇偶性与单调性(不要求证明);
(2)若函数的定义域为
,求满足不等式
的实数
的取值集合;
(3)当时,
的值恒为负,求
的取值范围.