随着旅游事业的发展,我县花亭湖景区近几年得到了很好的开发,同时也受到了污染. 花亭湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量.现假设下雨和蒸发平衡,且污染物和湖水均匀混合.用表示某一时刻一立方米湖水中所含污染物的克数(我们称其为“湖水污染质量分数”),
表示湖水污染初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析
时,湖水的污染程度如何?
(本小题满分16分)在数列 中,已知
,
为常数.
(1)证明: 成等差数列;
(2)设 ,求数列 的前n项和
;
(3)当时,数列
中是否存在三项
成等比数列,且
也成等比数列?若存在,求出
的值;若不存在,说明理由.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ).
(1)求S关于t的函数解析式,并指出该函数的定义域;
(2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
(本小题满分14分)在平面直角坐标系xOy中,己知点 ,C, D分别为线段OA, OB上的动点,且满足AC=BD.
(1)若AC=4,求直线CD的方程;
(2)证明:OCD的外接圆恒过定点(异于原点O).
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CP
PB,求证:CP
PA:
(2)若过点A作直线⊥平面ABC,求证:
//平面PBC.
(本小题满分14分)己知向量 ,
.
(1)若 ,求
的值:
(2)若 ,且
,求
的值.