(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2AB=2.侧面为正三角形,且平面PAD⊥平面ABCD.网(1)若M为PC上一动点,则M在何位置时,PC⊥平面MDB?并加已证明;(2)若G为的重心,求二面角G-BD-C大小.
在中,,. (Ⅰ)求的值;(Ⅱ)设,求的面积.
设命题P:指数函数单调递减 ,q:二次函数的图像恒在x轴上方,若为真命题,求的取值范围.
已知,直线,过点且与直线相切的动圆圆心的 轨迹为. (1)求的方程; (2)已知各项均为正数的数列的前项和为,且满足:点 在曲线上,求证:.
设椭圆,其相应焦点的准线方程为. (1)求椭圆的方程; (2)过点作两条互相垂直的直线分别交椭圆于点、和、, 求的最小值.
双曲线与椭圆有相同的焦点,直线是双曲线的 一条渐近线. (1)求双曲线的方程; (2)已知过点的直线与双曲线交于、两点,若,求直线的方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号