(本题满分共12分)如图,在中,
为
边上高,
,
,沿
将
翻折,使得
,得到几何体
。(1)求证:
;
(2)求与平面
成角的正切值。
已知椭圆,椭圆的右焦点为F.
(1)求过点F且斜率为1的直线被椭圆截得的弦长.
(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.
(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.
已知正四棱柱中,
.
(Ⅰ)求证:;
(Ⅱ)求钝二面角的余弦值;
(Ⅲ)在线段上是否存在点
,使得平面
平面
,若存在,求出
的值;若不存在,
请说明理由.
已知动圆与圆
相切,且与圆
相内切,记圆心
的轨迹为曲线
,求曲线
的方程.
已知函数f(x)=x3+x-16.
(1)求满足斜率为4的曲线的切线方程;
(2)求曲线y=f(x)在点(2,-6)处的切线的方程;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.
请用函数求导法则求出下列函数的导数.
(1)y=esin x
(2)y=
(3)
(4)
(5)