(本小题满分12分)已知向量,定义
(1)求函数
的单调递减区间;(2)求函数
的最大值及取得最大值时的x的取值集合。
(本小题满分16分)
已知分别以和
为公差的等差数列
和
满足
,
,
(1)若,
≥2917,且
,求
的取值范围;
(2)若,且数列
…的前
项和
满足
,
①求数列和
的通项公式;
②令,
,
>0且
,探究不等式
是否对一切正整数
恒成立?
(本小题满分16分)
某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量
(件)之间大体满足关系:
(注:次品率,如
表示每生产10件产品,约有1件为次品.其余为合格品.)
已知每生产一件合格的仪器可以盈利元,但每生产一件次品将亏损
元,故厂方希望定出合适的日产量,
(1)试将生产这种仪器每天的盈利额(元)表示为日产量
(件)的函数;
(2)当日产量为多少时,可获得最大利润?
(本小题满分14分)
已知点,点
是⊙
:
上任意两个不同的点,且满足
,设
为弦
的中点.
(1)求点的轨迹
的方程;
(2)试探究在轨迹上是否存在这样的点:它到直线
的距离恰好等于到点
的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
(本小题满分14分)
如图a,在直角梯形中,
,
为
的中点,
在
上,且
。已知
,沿线段
把四边形
折起如图b,使平面
⊥平面
。
(1)求证:⊥平面
;
(2)求三棱锥体积.
(本小题满分14分)
已知复数,
,(i为虚数单位,
),且
.
(1)若且
,求
的值;
(2)设,已知当
时,
,试求
的值.