已知二次函数 的解集为C (Ⅰ)求集合C; (Ⅱ)若方程
在C上有解,求实数a的取值范围; (Ⅲ)记f(x)在C上的值域为A,若
的值域为B,且
,求非正实数t的取值范围。
如图,过椭圆内一点
的动直线
与椭圆相交于M,N两点,当
平行于x轴和垂直于x轴时,
被椭圆
所截得的线段长均为
.
(1)求椭圆的方程;
(2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线
都满足
?若存在,求出定点B的坐标,若不存在,请说明理由.
如图,在四棱锥中,底面ABCD是菱形,
,侧面
底面ABCD,并且
,F为SD的中点.
(1)求三棱锥的体积;
(2)求直线BD与平面FAC所成角的正弦值.
某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为,第二个项目、第三个项目测试过关的概率分别为x,y(
),且不同项目是否能够测试过关相互独立,记
为该生测试过关的项目数,其分布列如下表所示:
(1)求该生至少有2个项目测试过关的概率;
(2)求的数学期望
.
已知向量,
,
,设函数
的部分图象如图所示,A为图象的最低点,B,C为图象与x轴的交点,且
为等边三角形,其高为
.
(1)求的值及函数
的值域;
(2)若,且
,求
的值.
已知椭圆:
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的方程;
(2)设,过点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于
,
两点,若直线
、
的斜率分别为
、
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.