游客
题文

已知分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得分别是的外接圆和内切圆.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图,正方体中, E是的中点.

(1)求证:∥平面AEC;
(2)求与平面所成的角.

(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,且离心率等于,直线与椭圆C交于M,N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C的右焦点F是否可以为的垂心?若可以,求出直线的方程;若不行,请说明理由.

已知为双曲线的左、右焦点.
(Ⅰ)若点为双曲线与圆的一个交点,且满足,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为到渐近线的距离是,过的直线交双曲线于A,B两点,且以AB为直径的圆与轴相切,求线段AB的长.

已知函数,其中为非零常数.
(Ⅰ)解关于的不等式
(Ⅱ)若当时,函数的最小值为3,求实数的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号