如图16-1所示,一个连同装备总质量为M=100千克的宇航员,
在距离飞船为S=45米与飞船处于相地静止状态。宇航员背着
装有质量为m0=0.5千克氧气的贮氧筒,可以将氧气以V=50米/秒的喷咀喷出。为了安全返回飞船,必须向返回的相反方向喷出适量的氧,同时保留一部分氧供途中呼吸,且宇航员的耗氧率为 R=2.5×10-4千克/秒。
试计算:(1)喷氧量应控制在什么范围? 返回所需的最长和最短时间是多少?
(2)为了使总耗氧量最低,应一次喷出多少氧? 返回时间又是多少?
如图所示为一种加速度仪的示意图。质量为m的振子两端连有劲度系数均为k的轻弹簧,电源的电动势为E,不计内阻,滑动变阻器的总阻值为R,有效长度为L,系统静止时滑动触头位于滑动变阻器正中,这时电压表指针恰好在刻度盘正中。求:
⑴系统的加速度a(以向右为正)和电压表读数U的函数关系式。
⑵将电压表刻度改为加速度刻度后,其刻度是均匀的还是不均匀的?为什么?
⑶若电压表指针指在满刻度的3/4位置,此时系统的加速度大小和方向如何?
(1)托盘上未放物体时,在托盘自身重力作用下,P1离A的距离xl.
(2)托盘上放有质量为m的物体时,P1离A的距离x2.
(3)在托盘上未放物体时通常先核准零点,其方法是:调节P2,使P2离A的距离也为xl,从而使P1、P2间的电压为零.校准零点后,将物体m放在托盘上,试推导出物体质量m与P1、P2间的电压U之间的函数关系式.
(1)加速电场的电压U
(2)Q点的坐标(x,y)
(3)电子打在荧光屏上的速度.
“勇气”号离火星地面12m时与降落伞自动脱离,被众气囊包裹的“勇气”号下落到地面后又弹跳到15m高处,这样上下碰撞了若干次后,才静止在火星表面上.假设“勇气”号下落及反弹运动均沿竖直方向.已知火星的半径为地球半径的二分之一,质量为地球的九分之一(取地球表面的重力加速度为10m/s2,计算结果可保留根式).
(1)根据上述数据,火星表面的重力加速度是多少?
(2)若被众气囊包裹的“勇气”号第一次碰火星地面时,其机械能损失为其12m高处与降落伞脱离时的机械能的20﹪,不计空气的阻力,求“勇气”号与降落伞脱离时的速度
有一辆汽车以15 m/s的速度匀速行驶,在其正前方有一陡峭山崖,汽车鸣笛2 s后司机听到回声,此时汽车距山崖的距离多远?(v声="340" m/s)