马老师从课本上抄录一个随机变量X的概率分布律如下表
x |
1 |
2 |
3 |
P(ε=x) |
? |
! |
? |
请小牛同学计算ε的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案E(ε)=________.
一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是________.
某射手射击所得环数X的分布列如下:
X |
7 |
8 |
9 |
10 |
P |
x |
0.1 |
0.3 |
y |
已知X的期望E(X)=8.9,则y的值为________.
甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.
如图,EFGH是以O为圆心,半径为1的圆内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=________;
(2)P(B|A)=________.