(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为(是已知正实数),求与之间的最短距离.
设不等式ax2+bx+c>0的解集是{x|a<x<β}(0<a<β),求不等式cx2+bx+a<0的解集.
若不等式 对一切x恒成立,求实数m的范围.
已知关于的方程两根为,试求的极值。
证明关于的不等式与,当为任意实数时,至少有一个桓成立。
为何值时,关于的方程的两根: (1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号