已知,函数,在是一个单调函数。(1)试问在的条件下,在能否是单调递减函数?说明理由。(2)若在上是单调递增函数,求实数a的取值范围。(3)设且,比较与的大小。
已知,求函数得单调递减区间.
已知,,求.
函数在区间上都有意义,且在此区间上 ①为增函数,; ②为减函数,. 判断在的单调性,并给出证明.
在经济学中,函数的边际函数为,定义为,某公司每月最多生产100台报警系统装置。生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差. ①求出利润函数及其边际利润函数; ②求出的利润函数及其边际利润函数是否具有相同的最大值; ③你认为本题中边际利润函数最大值的实际意义.
已知函数,且,,试问,是否存在实数,使得在上为减函数,并且在上为增函数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号