一火车每小时煤消耗的费用与火车行驶的速度之立方成正比,已知当速度为每小时千米时,每小时消耗煤之价格为
元,其他费用每小时要
元,问火车行驶的速度如何时,才能使火车从甲城开往乙城的费用最少。(已知火车的最高速度为每小时
千米)
(本小题满分14分)
已知数列的前
项和为
,且
.
(1)求数列的通项公式;
(2)设数列满足:
,求证:
;
(3)求证:]
(本小题满分13分)
已知函数
(1) 求函数的单调区间和极值;
(2) 若函数对任意
满足
,求证:当
,
(3) 若,且
,求证:
(本小题满分12分)
某商店储存的50个灯泡中, 甲厂生产的灯泡占, 乙厂生产的灯泡占
, 甲厂生产的灯泡的一等品率是
, 乙厂生产的灯泡的一等品率是
.
(1) 若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等), 则它是甲厂生产的一等品的概率是多少?
(2) 从这50个灯泡中随机抽取出的一个灯泡是一等品, 求它是甲厂生产的概率是多少?
(3) 若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等), 这两个灯泡中是甲厂生产的一等品的个数记为, 求
的值.
(本小题满分12分)
如图所示的多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(1) 求证:AE∥平面DCF
(2) 当AB的长为时,
求二面角A-EF-C的大小.
(本小题满分12分)
如图,A是单位圆与轴正半轴的交点,点P在单位圆上,∠AOP=
(0<
<
),
,四边形OAQP的面积为S.
(1) 求的最大值及此时
的值
0.
(2) 设点B的坐标为(),∠AOB=
,在(1)的条件下,
求△BOP的面积S0.