(本小题满分16分)设是公差为
的等差数列,
是公比为
(
)的等比数列.记
.
(1)求证:数列为等比数列;
(2)已知数列的前4项分别为4,10,19,34.
① 求数列和
的通项公式;
② 是否存在元素均为正整数的集合,
,…,
(
,
),使得数列
,
,…,
为等差数列?证明你的结论.
(本小题满分16分)设,函数
.
(1)若为奇函数,求
的值;
(2)若对任意的,
恒成立,求
的取值范围;
(3)当时,求函数
零点的个数.
(本小题满分16分)如图,在平面直角坐标系中,椭圆
的左顶点为
,右焦点为
.
为椭圆上一点,且
.
(1)若,
,求
的值;
(2)若,求椭圆的离心率;
(3)求证:以为圆心,
为半径的圆与椭圆的右准线
相切.
(本小题满分14分)在平面直角坐标系中,已知向量
(1,0),
(0,2).设向量
(
)
,
,其中
.
(1)若,
,求x
y的值;
(2)若xy,求实数
的最大值,并求取最大值时
的值.
(本小题满分14分)体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试的结果如下:
等级 |
优 |
良 |
中 |
不及格 |
人数 |
5 |
19 |
23 |
3 |
(1)从该班任意抽取1名学生,求这名学生的测试成绩为“良”或“中”的概率;
(2)测试成绩为“优”的3名男生记为,
,
,2名女生记为
,
.现从这5人中任选2人参加学校的某项体育比赛.
① 写出所有等可能的基本事件;
② 求参赛学生中恰有1名女生的概率.