求证:
设函数是定义域为R上的奇函数; (Ⅰ)若,试求不等式的解集; (Ⅱ)若上的最小值。
已知函数 (Ⅰ)若上是增函数,求实数的取值范围。 (Ⅱ)若的一个极值点,求上的最大值。
已知函数 (I)求的最小正周期和单调递减区间; (Ⅱ)若上恒成立,求实数的取值范围。
定义在R上的单调函数满足,且对于任意的, 都有. (1)求证:为奇函数; (2)若对任意的恒成立,求实数的取值范围.
设命题p:函数是R上的减函数,命题q: 函数在的值域是[-1,3].若“p且q”为假命题。“p或q” 为真命题,求的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号