已知O为坐标原点,点A、B的坐标分别为A(a,0)、B(0,a),其中常数a>0,点P在线段AB上,且=λ
(0≤λ≤1),求
·
的最大值.
如图,在四棱锥 中, ,且 .
(1)证明:平面 平面 ;
(2)若 , ,求二面角 的余弦值.
△ABC的内角A,B,C的对边分别为a,b,c,已知 的面积为
(1)求 ;
(2)若 , ,求 的周长.
[选修4-5:不等式选讲]
已知函数 .
(1)当 时,求不等式 的解集;
(2)设函数 ,当 时, ,求a的取值范围.
[选修4-4:坐标系与参数方程]
在直角坐标系 中,曲线 的参数方程为 ,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出 的普通方程和 的直角坐标方程;
(2)设点P在 上,点Q在 上,求 的最小值及此时P的直角坐标.
[选修4-1:几何证明选讲]如图,⊙O中 的中点为P,弦PC,PD分别交AB于E,F两点.
(1)若 ,求 的大小;
(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明: .