游客
题文

mR,在平面直角坐标系中,已知向量a=(mx,y+1),向b=(x,y-1),ab,动点M(x,y)的轨迹为E
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知m=14,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OAOBO为坐标原点),并求出该圆的方程;
(3)已知m=14,设直线l与圆C:x2+y2=R21<R<2)相切于A1,且l与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

设函数
(1)若函数时取得极小值,求的值;
(2)若函数在定义域上是单调函数,求的取值范围.

某商厦欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用万元满足.已知万件该商品的进价成本为万元,商品的销售价格定为元/件.
(1)将该商品的利润万元表示为促销费用万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?

已知函数
(1)求曲线在点处的切线方程;
(2)如果曲线的某一切线与直线垂直,求切点坐标与切线的方程.

(本小题12分)某村计划建造一个室内面积为800的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大?最大种植面积是多少?

(本小题12分)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.求该企业获得的最大利润.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号