已知函数f(x)=ax2+ax和g(x)=x-a,其中aÎR且a¹0.
(1)若函数f(x)与g(x)的图像的一个公共点恰好在x轴上,求的值;
(2)若函数f(x)与g(x)图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.
(3)若p和q是方程f(x)=g(x)的两根,且满足0<p<q<,证明:当xÎ(0,p)时,g(x)<f(x)<p-a..
设A(),B(
)是椭圆
的两点,
,
,且
,椭圆的离心率
,短轴长为2,O为坐标原点。
(1)求椭圆方程;
(2)若存在斜率为的直线AB过椭圆的焦点F(
)(
为半焦距),求
的值;
(3)试问AOB的面积是否为定值?若是,求出该定值;若不是,说明理由。
已知是函数
的一个极值点。
(1)求;(2)求函数
的单调区间;
(3)若直线与函数
的图象有3个交点,求
的取值范围。
(12)设焦点在轴上的双曲线渐近线方程为
,且离心率为2,已知点A(
)
(1)求双曲线的标准方程;
(2)过点A的直线L交双曲线于M,N两点,点A为线段MN的中点,求直线L方程。
函数,过曲线
上的点
的切线斜率为3.
(1)若在
时有极值,求f (x)的表达式;
(2)在(1)的条件下,求在
上最大值;
设p: 实数,q:实数
满足
,
且的必要不充分条件,求
的取值范围。