空间存在着以x=0平面为分界面的两个匀强磁场,左右两边磁场的磁感应强度分别为B1和B2,且B1:B2=4:3,方向如图所示。现在原点O处一静止的中性原子,突然分裂成两个带电粒子a和b,已知a带正电荷,分裂时初速度方向为沿x轴正方向,若a粒子在第四次经过y轴时,恰好与b粒子第一次相遇。求:
a粒子在磁场B1中作圆周运动的半径与b粒子在磁场B2中圆周运动的半径之比。
|
a粒子和b粒子的质量之比。
中子星是恒星演变到最后的一种存在形式.
(1)有一密度均匀的星球,以角速度ω绕自身的几何对称轴旋转.若维持其表面物质不因快速旋转而被甩掉的力只有万有引力,那么该星球的密度至少要多大?
(2)蟹状星云中有一颗中子星,它每秒转30周,以此数据估算这颗中子星的最小密度.
(3)若此中子星的质量约为太阳的质量(2×1030 kg),试问它的最大可能半径是多大?
(1)试在图中粗略画出恒星运动的轨道和位置;
(2)试计算恒星与点C间的距离和恒星的运行速率v.
我国预计在2007年4月份发射一颗绕月运行的探月卫星“嫦娥1号”。设“嫦娥1号”卫星环绕月球做圆周运动,并在此圆轨道上绕行n圈,飞行时间为t。已知月球半径为R,月球表面的重力加速度为g。导出飞船在上述圆轨道上运行时离月球表面高度h的公式(用t、n、R、g表示)
已知地球半径R =6.4×106m,地面附近重力加速度g ="9.8" m/s2,计算在距离地面高为h=2×106m的圆形轨道上的卫星做匀速率圆周运动的线速度v和周期T.