袋中有同样的球5个,其中3个红色,2个黄色,现从中随机且不返回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量为此时已摸球的次数,求:
(1)随机变量的概率分布列;(2)随机变量
的数学期望与方差.
在中,角
的对边分别是
,若
.
(1)求角的大小;
(2)若,
的面积为
,求
的值.
已知圆的圆心为
,
,半径为
,圆
与离心率
的椭圆
的其中一个公共点为
,
,
分别是椭圆的左、右焦点.
(1)求圆的标准方程;
(2)若点的坐标为
,试探究直线
与圆
能否相切,若能,求出椭圆
和直线
的方程;若不能,请说明理由.
如图,三棱柱中,侧棱
平面
,
为等腰直角三角形,
,且
分别是
的中点.
(1)求证:平面
;
(2)求三棱锥的体积.
(3)若点是
上一点,求
的最小值.
设有关于的一元二次方程
.
(1)若是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有实根的概率;
(2)若是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
已知函数(其中
),
.
(1)若命题是假命题,求
的取值范围;
(2)若命题,命题
满足
或
为真命题,若
是
的必要不充分条件,求
的取值范围.