从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率
.
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共100件,从中任意抽取2件,求事件:“取出的2件产品中至少有一件二等品”的概率
.
已知函数(
,
为自然对数的底数).
(1)若曲线在点
处的切线平行于
轴,求
的值;
(2)求函数的极值;
(3)当的值时,若直线
与曲线
没有公共点,求
的最大值.
已知圆C:,直线L:
.
(1)求证:对直线L与圆C总有两个不同交点;
(2)设L与圆C交于不同两点A、B,求弦AB的中点M的轨迹方程;
(3)若定点P(1,1)分弦AB所得向量满足,求此时直线L的方程.
在数列中,已知
,
(
.
(1)求证:是等差数列;
(2)求数列的通项公式
及它的前
项和
.
如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.
某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
产品编号 |
A1 |
A2 |
A3 |
A4 |
A5 |
质量指标(x,y,z) |
(1,1,2) |
(2,1,1) |
(2,2,2) |
(1,1,1) |
(1,2,1) |
产品编号 |
A6 |
A7 |
A8 |
A9 |
A10 |
质量指标(x,y,z) |
(1,2,2) |
(2,1,1) |
(2,2,1) |
(1,1,1) |
(2,1,2) |
(1)利用上表提供的样本数据估计该批产品的一等品率;
(2)在该样品的一等品中,随机抽取两件产品,
(1)用产品编号列出所有可能的结果;
(2)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率