已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周 ,求圆M的半径最小时的圆M的方程.
已知
是由满足下述条件的函数构成的集合:对任意
,
① 方程
有实数根;② 函数
的导数
满足
.
(Ⅰ)判断函数
是否是集合
中的元素,并说明理由;
(Ⅱ)集合
中的元素
具有下面的性质:若
的定义域为
,则对于任意
,都存在
,使得等式
成立.试用这一性质证明:方程
有且只有一个实数根;
(Ⅲ)对任意
,且
,求证:对于
定义域中任意的
,
,
,当
,且
时,
已知焦点在
轴上的椭圆
过点
,且离心率为
,
为椭圆
的左顶点.
(1)求椭圆
的标准方程;
(2)已知过点
的直线
与椭圆
交于
,
两点.
① 若直线
垂直于
轴,求
的大小;
② 若直线
与
轴不垂直,是否存在直线
使得
为等腰三角形?如果存在,求出直线
的方程;如果不存在,请说明理由.
二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒. 引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.
罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ
图1,平面四边形
关于直线
对称,
,
,
.把
沿
折起(如图2),使二面角
的余弦值等于
.
对于图二,完成以下各小题:
(Ⅰ)求
两点间的距离;
(Ⅱ)证明:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
已知向量
(Ⅰ)求
的解析式;
(Ⅱ)求由
的图象、
轴的正半轴及
轴的正半轴三者围成图形的面积。