(本小题满分13分)
已知A,B分别为曲线C:+
=1(y
0,a>0)与x轴
的左、右两个交点,直线过点B,且与
轴垂直,S为
上
异于点B的一点,连结AS交曲线C于点T.
(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;
(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。
已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的余弦值;
(Ⅲ)设为
中点,在棱
上是否存在一点
,使
平面
?若存在,求
的值;若不存在,请说明理由.
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
如图,在三棱锥中,平面
平面
,
为等边三角形,
,且
,O,M分别为
,
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)设是线段
上一点,满足平面
平面
,试说明点的位置
;
(Ⅲ)求三棱锥的体积.
如图,在四棱锥中,
平面
,底面
是菱形,AB=2,
.
(Ⅰ)求证:平面PAC;
(Ⅱ)若,求
与
所成角的余弦值;
圆满足:
①圆心在射线
上;
②与轴相切;
③被直线截得的线段长为
(1)求圆的方程;
(2)过直线上一点P作圆
的切线,设切点为E、F,求四边形
面积的最小值,并求此时
的值.