已知.
(Ⅰ)对一切恒成立,求实数
的取值范围;
(Ⅱ)当时,求函数
在区间
上的最值;
(Ⅲ)证明:对一切,都有
成立.
某农户要建造一长方体无盖蓄水池,其容积为48,深为3m,如果池底每平方米造价为80元,池壁每平方米造价为60元,问怎样设计水池能使总造价最低,最低总造价是多少元?
已知向量,
(1)求函数的最小正周期;
(2)若,求
的最大值和最小值。
圆内一点
,过点
的直线
的倾斜角为
,直线
交圆于
两点,
(1)当时,求弦
的长;
(2)当弦最短时,求直线
的方程。
(本小题满分12分)
对于函数,若存在
R,使
成立,则称
为
的不动点.如果函数
N*
有且仅有两个不动点0和2,且
(1)求实数,
的值;
(2)已知各项不为零的数列,并且
, 求数列
的通项公式;;
(3)求证:.
(本小题满分12分)
已知F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点.
(1)根据条件求出b和k满足的关系式;
(2)向量在向量
方向的投影是p,当(×)p2=1时,求直线l的方程;
(3)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.