已知函数,
为
的导函数。 (1)求函数
的单调递减区间;
(2)若对一切的实数,有
成立,求
的取值范围;
(3)当时,在曲线
上是否存在两点
,使得曲线在
两点处的切线均与直线
交于同一点?若存在,求出交点纵坐标的最大值;若不存在,请说明理由.
如图,直三棱柱ABC﹣A 1B 1C 1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA 1的长为5.
(1)求三棱柱ABC﹣A 1B 1C 1的体积;
(2)设M是BC中点,求直线A 1M与平面ABC所成角的大小.
已知一个口袋有
个白球,
个黑球
,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,
的抽屉内,其中第k次取出的球放入编号为k的抽屉
.
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率 ;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数, 是 的数学期望,证明 .
如图,在平行六面体
中,
,且
,
,
.
(Ⅰ)求异面直线 与 所成角的余弦值;
(Ⅱ)求二面角 的正弦值.
已知a,b,c,d为实数,且
,
,证明
.
在平面直角坐标系
中,已知直线l的参数方程为
(t为参数),曲线C的参数方程为
(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.