((本题15分)
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1)。设k为非零实数,矩阵M=,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,
(1)求k的值。
(2)判断变换MN是否可逆,如果可逆,求矩阵MN的逆矩阵;如不可逆,说明理由.
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式
.
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(注:市场售价和种植成本的单位:元/百千克,时间单位:天)
已知函数,且对任意的实数
都有
成立.
(1)求实数的值;
(2)利用函数单调性的定义证明函数在区间
上是增函数.
已知函数.
(1)证明函数是偶函数;
(2)在如图所示的平面直角坐标系中作出函数的图象.
已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<},全集为实数集R.
(1)求
(2)如果,求a的取值范围.
如图,已知圆,圆
.
(1)若过点的直线
被圆
截得的弦长为
,求直线
的方程;
(2)设动圆同时平分圆
、圆
的周长.
①求证:动圆圆心在一条定直线上运动;
②动圆是否过定点?若过,求出定点的坐标;若不过,请说明理由.