已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<},全集为实数集R.
(1)求
(2)如果,求a的取值范围.
(本小题满分14分)设椭圆的左焦点为
,上顶点为
,过点
与
垂直的直线分别交椭圆
与
轴正半轴于点
,且
. ⑴求椭圆
的离心率;⑵若过
、
、
三点的圆恰好与直线
相切,求椭圆
的方程.
(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由
沿棱柱侧面经过棱
到点
的最短路线长为
,设这条最短路线与
的交点为
.
(1)求三棱柱的体积;
(2)在面内是否存在过
的直线与面
平行?证明你的判断;
(3)证明:平面⊥平面
.
(本小题满分13分)某购物广场拟在五一节举行抽奖活动,规则是:从装有编号为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.
(1)求中三等奖的概率;
(2)求中奖的概率.
(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求的值;(2)若
,且
,求
的值.
(本小题满分14分)已知函数,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n ÎN *),x1=4.
(Ⅰ)用表示xn+1;
(Ⅱ)记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若bn=xn-2,试比较与
的大小.