数列满足
,
是常数.
⑴当时,求
及
的值;
⑵数列是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
⑶求的取值范围,使得存在正整数
,当
时总有
.
(本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=,PD⊥平面ABCD,PD=AD=1,点
分别为AB和PD中点.
(Ⅰ)求证:直线AF平面PEC ;
(Ⅱ)求PC与平面PAB所成角的正弦值.
(本小题满分12分)若定义在上的函数
满足
,
,
R.
(Ⅰ)求函数解析式;
(Ⅱ)求函数单调区间.
(本小题满分12分)已知的三个角
的对边分别为
,且
成等差数列,且
。数列
是等比数列,且首项
,公比为
。
(1)求数列的通项公式;
(2)若,求数列
的前
项和
.
(本小题满分12分)已知函数,其中
.
(Ⅰ)求最小正周期及对称轴方程;
(Ⅱ)在锐角中,内角
的对边分别为
,已知
,
,求
边上的高
的最大值.
(本小题满分12分)在中,已知内角A、B、C成等差数列,边AC
6。设内角
,
的周长为
。