已知函数f(x)=,数列{xn}的通项由xn=f(xn-1)(n≥2,且n∈N*)确定.
(1)求证:{}是等差数列;
(2)当x1=时,求x100.
(本小题满分12分)
已知定义在上的函数
,其中
为大于零的常数.
(Ⅰ)当时,令
,求证:当
时,
(
为自然对数的底数);
(Ⅱ)若函数,在
处取得最大值,求
的取值范围.
(本小题满分12分)
已知函数的导函数
,数列
的前
项和为
,点
均在函数
的图象上.
(Ⅰ)求数列的通项公式及
的最大值;
(Ⅱ)令,其中
,求
的前
项和.
(本小题满分12分)
如图,为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求四棱锥的体积
;(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段上是否存在一点
,使得
平面
,并说明理由.
本小题满分12分)
设角是
的三个内角,已知向量
,
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若向量,试求
的取值范围.
(本小题满分10分)
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC。