(4-4极坐标与参数方程)(本小题10分)
已知直线的参数方程为
(t为参数),曲线C的参数方程为
(θ为参数).
⑴将曲线C的参数方程化为普通方程;
⑵若直线l与曲线C交于A、B两点,求线段AB的长.
过点 的椭圆 的离心率为 ,椭圆与 轴交于两点 、 ,过点 的直线 与椭圆交于另一点 ,并与 轴交于点 ,直线 与直线 交于点 .
(I)当直线
过椭圆右焦点时,求线段
的长;
(Ⅱ)当点
异于点
时,求证:
已知
是以
为首项,
为公比的等比数列,
为它的前
项和.
(Ⅰ)当
、
、
成等差数列时,求
的值;
(Ⅱ)当
、
、
成等差数列时,求证:对任意自然数
,
、
、
也成等差数列.
如图,在直三棱柱 中, , ,延长 至点 ,使 ,连接 交棱 于 .
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的平面角的余弦值;
已知函数
,
.
(Ⅰ)求
的最小正周期和最小值;
(Ⅱ)已知
求证:
.
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
、
;两小时以上且不超过三小时还车的概率分别为
、
;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.