本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为
、
;两小时以上且不超过三小时还车的概率分别为
、
;两人租车时间都不会超过四小时.
(Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.
已知集合S={2,3,a2+2a-3},A={|a+1|,2},SA={a+3},求a的值.
已知集合A={2,4,6,8,9},B={1,2,3,5,8},又知非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;若各元素都减2后,则变为B的一个子集,求集合C
对于函数,其中a为实常数,已知函数y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直。
(Ⅰ)求实数的值;
(Ⅱ)若关于的方程
有三个不等实根,求实数
的取值范围;
(Ⅲ)若函数无零点,求实数
的取值范围。
如图,抛物线的顶点在坐标原点,且开口向右,点A,B,C在抛物线上,△ABC的重心F为抛物线的焦点,直线AB的方程为。
(Ⅰ)求抛物线的方程;
(Ⅱ)设点M为某定点,过点M的动直线l与抛物线相交于P,Q两点,试推断是否存在定点M,使得以线段PQ为直径的圆经过坐标原点?若存在,求点M的坐标;若不存在,说明理由。
将3k(k为正整数)个石子分成五堆。如果通过每次从其中3堆中各取走一个石子,而最后取完,则称这样的分法是“和谐的”。试给出和谐分法的充分必要条件,并加以证明。