游客
题文

m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) 
(1)证明: 当mM时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则mM。 
(2)当mM时,求函数f(x)的最小值。
(3)求证: 对每个mM,函数f(x)的最小值都不小于1。

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.

如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间(分钟/人)
1
1.5
2
2.5
3

已知这100位顾客中一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.
(注:将频率视为概率)

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比数列.
(Ⅰ)求a的值及数列{bn}的通项公式;
(Ⅱ)设数列{logan}的前n项和为Tn.求使Tn>bn的最小正整数n.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号