某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示ak(不必证明);
(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用
表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求
的数学期望。
数列
满足
,
,
是常数。
(Ⅰ)当
时,求
及
的值;
(Ⅱ)数列
是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(Ⅲ)求
的取值范围,使得存在正整数
,当
时总有
。
已知
的顶点
在椭圆
上,
在直线
上,且
.
(Ⅰ)当
边通过坐标原点
时,求
的长及
的面积;
(Ⅱ)当
,且斜边
的长最大时,求
所在直线的方程。
甲、乙等五名奥运志愿者被随机地分到
四个不同的岗位服务,每个岗位至少有一名志愿者。
(Ⅰ)求甲、乙两人同时参加
岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。
已知函数
,且
是奇函数.
(Ⅰ)求
的值;
(Ⅱ)求函数
的单调区间.