有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用
表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求
的数学期望。
(1)、据此说明四棱锥P-ABCD具有的特征及已知条件;
(2)、由你给出的特征及条件证明:面PAD⊥面PCD
(3)、若PC中点为E,求直线AE与面PCD所成角的余弦值.
(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在
的有4人.在
,
各区间分布情况如右图所示的频率分布直方图,若直方图中,
和
对应小矩形高度相等,且
对应小矩形高度又恰为
对应小矩形高度的一半.
(1)确定图中的值;
(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?
(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?
、(本小题满分12分)已知函数
为偶函数,且其图象两相邻对称轴间的距离为
(1)求的解析式;
(2)若把图象按向量
平移,得到函数
的图象,求
的单调增区间.
(本小题满分12分)已知△ABC中,角A,B,C的对边分别为a,b,c,且b=c,sinA•cosC=3sinC•cosA.
(Ⅰ)若△ABC的面积S=sinA,求c;
(Ⅱ)求的值.
(本小题满分12分)设向量=(3,1),
=(-1,2),向量
垂直于向量
,向量
平行于
,试求
时,
的坐标.