电流强度I与时间t的关系式 。(1)在一个周期内
如图所示,试根据图象写出
的解析式;(2)为了使
中t在任意一段
秒的时内I能同时取最大值|A|和最小值-|A|,那么正整数
的最小值为多少?
(本小题满分12分)已知为实数,函数
的导函数。(1)若
上的最大值和最小值;(2)若函数
有两个不同的极值点,求
的取值范围。
(本小题满分12分)
甲、乙两名射击运动员,甲射击一次命中10环的概率为,乙射击一次命中10环的概率为s,若他们各自独立地射击两次,设乙命中10环的次数为ξ,且ξ的数学期望Eξ=
,
表示甲与乙命中10环的次数的差的绝对值.
(1)求s的值及的分布列, (2)求
的数学期望.
(本小题满分12分)
如图,函数f1(x)=A sin(wx+j)(A>0,w>0,|j|<)的一段图象,过点(0,1).(1)求函数f1(x)的解析式;(2)将函数y=f1(x)的图象按向量
=
平移,得到函数y=f2(x),求y=f1(x)+f2(x)的最大值,并求此时自变量x的集合.
(本小题满分13分)已知椭圆的中心在原点O,短轴长为,其焦点F(c,0)(c>0)对应的准线l与x轴交于A点,|OF|=2|FA|,过A的直线与椭圆交于P、Q两点.
(1)求椭圆的方程;(2)若,求直线PQ的方程;(3)设
,过点P且平行于准线l的直线与椭圆相交于另一点M. 求证F、M、Q三点共线.
(本小题满分12分)
已知函数=
,在
处取得极值2。
(1)求函数的解析式;
(2)满足什么条件时,区间
为函数
的单调增区间?
(3)若为
=
图象上的任意一点,直线
与
=
的图象切于
点,求直线
的斜率的取值范围。