如右图,在半径为R的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离r的平方成反比,即I=k·
,其中k是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h,才能使桌子边缘处最亮?
已知函数
在点
处取得极小值-4,使其导数
的
的取值范围为
,求:
(1)
的解析式;
(2)
,求
的最大值;
已知:A、B、C是
的内角,
分别是其对边长,向量
,
,
.
(Ⅰ)求角A的大小;
(Ⅱ)若
求
的长.
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=
,求二面角S-AB-C的余弦值。
已知
,
<θ<π.
(1) 求tanθ;
(2)求
的值.
某公司计划2011年在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司每分钟所做的广告,能给公司带来的收益分别为0.3 万元和0.2万元.问:该公司如何分配在甲、乙两个电视台的广告时间,才能使公司收益最大,最大收益是多少万元?